APPLICATION OF THE EXTENDED COX-PROPORTIONAL HAZARDS MODEL
FOR THE ANALYSIS OF MASS ORAL AZITHROMYCIN FOR REDUCTION OF
CHILDHOOD MORTALITY IN THE PRESENCE OF TIME-DEPENDENT
COVARIATES

MASTER OF SCIENCE (BIOSTATISTICS) THESIS

ALVIN BLESSINGS CHISAMBI

UNIVERSITY OF MALAWI

DECEMBER, 2022



APPLICATION OF THE EXTENDED COX-PROPORTIONAL HAZARDS MODEL
FOR THE ANALYSIS OF MASS ORAL AZITHROMYCIN FOR REDUCTION OF
CHILDHOOD MORTALITY IN THE PRESENCE OF TIME-DEPENDENT
COVARIATES

MASTER OF SCIENCE (BIOSTATISTICS) THESIS

By
Alvin Blessings Chisambi

BSc. (Statistics and Computing)- University of Malawi

Thesis submitted to the Department of Mathematical Sciences, Faculty of Science, in Partial
fulfilment of the requirements for the degree of

Master of Science (Biostatistics)

University Of Malawi

December, 2022



DECLARATION
I, the undersigned, hereby declare that this thesis is my own original work which has not been
submitted to any other institution for similar purposes. Where other people’s work has been used

acknowledgements have been made.

ALVIN BLESSINGS CHISAMBI
Full Legal Name

Signature

Date



CERTIFICATE OF APPROVAL
The undersigned certify that this thesis represents the student’s own work and effort and has

been submitted with our approval.

Signature: Date:
Mavuto Mukaka, PhD (Professor)

Main Supervisor

Signature: Date:

Patrick Sawerengera,

Programme Coordinator



DEDICATION
To my beloved wife — Ellen Phiri Chisambi, you can do this!



ACKNOWLEDGMENTS
I would like to give it all to my supervisor Prof. Mavuto Mukaka, PhD for his guidance,
constructive ideas and for never giving up on me when | allowed work to take more of my time
on this thesis. | really appreciate the encouragement and his critiqgues on my work which has
helped me structure the entire thesis with understanding. If it was not for him, I wouldn’t have
been submitting this today! If we had supervisors like him, then more students would graduate

on this program in Malawi. It is all to you dear Prof.

| acknowledge Prof. Khumbo Kalua for his financial support and mentorship in operational
research. This can’t go without mentioning Prof. Robin Bailey for providing this dataset from
MORDOR clinical trial and Dr John Hart for structuring the dataset for this thesis. | appreciate

their assistance.



ABSTRACT
The famous Cox proportional hazard model is applied in most medical research studies that
involve time to event data like mass oral azithromycin for the reduction of childhood mortality.
Literature has shown that this model overestimates estimates in the presence of time varying
covariates. This thesis compared the Cox proportional hazard model to Extended Cox model that
account for time varying covariates. The models were applied to model the effect of age, weight,
and treatment in relation to death as the outcome of interest. The study findings showed that the
Cox PH model overestimated the effect of the covariates to the hazards of a participant dying as
it did not take into consideration the presence of time dependent covariates in the data as
compared to the extended Cox model. Kaplan Meir survival curves were plotted to compare
survival in the two study arms (Placebo and Azithromycin drug groups). The hazard of death was
associated with covariates age, weight, and treatment-received in both study arms. The results
from the Cox model showed that the expected hazard is 13.56 (4.89, 37.64) times higher in a
person who is one year older than another. For the variable weight, the expected hazard is 0.763
(0.64, 0.90) times lower risk reduction in the drug group as compared to placebo group. For the
variable treatment received, the expected hazard is 0.03 (0.02, 0.08) times lower risk reduction in
the drug group as compared to placebo group for those treated than those who did not receive
treatment. Whereas in the extended Cox model, the main model showed that the expected hazard
is 3.74(0.53, 26.35) times higher in a person who is one year older than another, the expected
hazard is 21.01(6.82, 64.72) times higher for those who did not receive drug than those who
received drug (p=<0.001). The time varying covariates model showed that the expected hazard is
1.24(0.84, 1.83) times higher in a person who is one year older than another. The expected
hazard is 1.85(1.48, 2.31) times higher in those who did not receive drug than those who
received drug (p=<0.001). The Extended Cox model was a better model when studying data that

involves time varying covariates to avoid reporting overestimated estimates.
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CHAPTER 1
INTRODUCTION

This chapter presents a brief background of the study area, the problem statement, study
objectives and its significance in the theoretical and empirical knowledge.

1.1 Background

World health Organization (WHO) through one of the fact sheets released in 2022 found that
Trachoma, an eye disease that causes blindness of around 1.9 million people, is hyperendemic in
the poorest/rural areas of most parts of the world. The statistics indicate that Trachoma is one of
the main causes of 1.4% of blindness in the whole world. Programs use the SAFE strategy to
eliminate blinding Trachoma in the world including Malawi which was declared free of blinding
Trachoma in 2020. The “A” in the SAFE strategy is Antibiotic (Azithromycin). Studies done in
Ethiopia had shown that Azithromycin played a big role in reducing childhood mortality.

According to a 2021 report by United Nations Inter-agency group for Childhood Mortality
Estimation (UN IGME), it was stated that despite the global efforts, the world appears to be
significantly off track to achieve the Sustainable Development Goals (SGDs) on preventing
childhood mortality for under-fives. As per the findings of this report, more than 5 million
children died before the age of 5 in the year 2020 alone. The report further states that SDGs aims
at having a neonatal mortality rate of 12 or fewer deaths per 1,000 live births, and an under-five
mortality rate of 25 or fewer deaths per 1,000 live births for all countries including Malawi, by
the year 2030. Research has shown that three-quarters of all childhood deaths occur after the
neonatal period, with malaria, pneumonia, and diarrhoea accounting for the majority. A study
done by (Sazawal S et al., 2003 and Moonen B et al., 2010) showed that Management is often
case detection and individualized therapy, but concluded that novel strategies such as mass

treatment may play a role. Studies have shown that mass drug administration (MDA) of



azithromycin has proven to reduce childhood mortality as it appears to have collateral benefits
against several diseases (Keenan, J.D. et al., 2015)

A Larger cluster randomized controlled trial was done in three countries (Malawi, Niger, and
Tanzania) to see the effect of Azithromycin on reduction of childhood mortality. Communities
were randomized to placebo and Azithromycin groups. In their study, they found that
Azithromycin had collateral benefits against several diseases that affects the under five children
(Keenan, J.D. et al.). The nature of the study was done in phases and individuals were followed
until the event of interest; death occurs. This kind of data is called Survival data and researchers,
or investigators use survival methods of analysis to analyze data of this nature.

Survival studies follow subjects until an event of interest occurs and measure explanatory
variables for that event, sometimes repeatedly over the course of follow up. Researchers have
mostly applied or used the Cox regression model in the analyses of time to event data. “The
associations between the survival outcome and time dependent measures may be overestimated
unless they are modeled appropriately to avoid wrong recommendations (Ngwa et al., 2016).”’
The Survival methods of analysis, for example, Cox regression model has been used in several
Mass Oral Azithromycin for childhood mortality studies. For example, (Porco, Travis C. et al.)
used Cox regression model to investigate the effect of Mass Oral Azithromycin on Childhood
mortality. Another study by (Keenan, J.D. et al.) also looked at the effect of Mass Azithromycin

distribution for reducing childhood mortality in sub-Saharan Africa.

In this thesis we explore the Time Dependent Cox Regression Model, which quantifies the effect
of repeated measures of covariates in the analysis of time to event data (Ngwa et al., 2016).
Literature has shown that the Time Dependent Cox Regression Model is commonly used in
biomedical research but sometimes if not handled properly, it does not explicitly adjust for the
times at which time dependent explanatory variables are measured (Barnett et al., 2011). If the
this is overlooked in the analysis, it can yield different estimates of association compared to
using a model that adjusts for these times. To address the question of how different these
estimates are from a statistical perspective, we compare the traditional Cox Proportional Hazards

Model to extended Cox model, considering models that adjust and do not adjust for time.



1.2 Problem Statement

Epidemiological or biomedical studies requires investigators or researchers are to evaluate the
effect of exposures, such as antibiotics, on clinical outcomes (Munoz-Price et al.). However,
many of these fluctuating exposures occur at intervals and are not present throughout the entire
time of observation. These “fluctuating” variables that occur at intervals are called time-
dependent variables. Researchers or investigators need to be careful when performing analysis
on these kind of variables by incorporating time-dependent exposure status in the statistical
models that are being fitted. When these time dependencies of antibiotic exposures are not
handled properly or ignored when fitting these models, one might end up with incorrect or
overestimated estimates of both hazards and hazard ratios (Munoz-Price et al.). Despite the
availability of the traditional Cox Proportional Hazards model and its capacity to incorporate

time-dependent covariates, investigators do not often utilize this.

There has been growing literature on survival models for analysis of time-to-event data in
medical research which handles both time independent covariates and time dependent covariates.
Studies in the past have employed different statistical techniques such as Cox regression model,
Kaplan Meier estimate, log-rank test, Logistic regression to study childhood mortality. However,
few studies tend to account for the presence of time varying covariates in the models used in

analyzing the data which may result in overestimation.

Sometimes just using this simple Cox proportional hazard model would not be ideal in situations
where the hazards are not proportional like in the cases where time-varying covariates are
present. A study done by (Zhang Z et al, 2018) on Time-varying covariates and coefficients in
Cox regression models, recommended that when time varying covariates or coefficients are
present, an analyst should consider taking them into account in survival modelling in order to
improve the estimation. This thesis will use extended Cox proportional hazard model which
takes into account time varying covariates present in analyzing child mortality data after mass
oral azithromycin to compare the estimates with that of just computing traditional Cox

proportional hazard model.



1.3 Study Objectives
This section presents the main and specific objectives of the study.

1.3.1 Main Objective
To fit and compare survival models that do not account for time varying covariates and extended
Cox regression model that account for time varying covariates for childhood mortality data in
Mangochi, Malawi.

1.3.2 Specific Objectives

1. To estimate and compare survival functions in the treatment and placebo arm between the
phases and between those aged less or more than 6 months at treatment

2. Estimate and comparing hazards at each phase with time fixed vs time dependent
exposure.

3. To assess if there is a difference in inference from standard survival methods and the
methods that adjust for time-varying covariates.

4. To assess the validity of fitted model assumptions.

1.4 Significance of the study

Analysis of time-varying covariates without accounting for them results in overestimation which
may make researchers come up with wrong conclusions. Therefore, modelling using standard
methods that do not account for time-varying covariates would not give analysts true picture of
what is on the ground. The study contributes to available work done in the field of survival
analysis when modeling survival time while accounting for time varying covariates. The study
will assess whether childhood mortality can be reduced using a novel approach—mass
administrations of azithromycin like those used for trachoma. Furthermore, results of the
research will help researchers understand appropriate methods to use when modelling survival

data with time-varying covariates.

In this chapter, we have presented a brief background of Childhood mortality reduction after

Oral azithromycin, the problem statement, objectives, and significance of the study. The



subsequent chapters present the literature review of the study area, the methodology used in the
study, the results and discussion of the study and conclusion and recommendation(s).



CHAPTER 2
LITERATURE REVIEW

This section presents an overview of survival analysis, reviews survival methods and approaches
in survival data analysis and introduces models that have been developed in modelling survival
data. In detail, this chapter reviews survival function, hazard function, hazard ratio, Kaplan
Meier (KM) methods, tests for survival analysis, Models in survival analysis, model parameter
estimation, model comparisons (Model diagnostics) and handling of time-varying covariates and
competing risks approach.

2.1 Overview of Survival Analysis

(Machin, Cheung, & Parmar, 2006) defines Survival analysis as “a set of methods for analyzing
data where the result variable is the time until the occurrence of an event of interest. They further
state that an event can either be death, occurrence of a disease, marriage, divorce, etc.” Cornel
Statistical Consulting Unit states that “the time to event or survival time are often measured in
days, weeks, years, etc. as an example, if the event of interest is heart failure, then the survival

time can be the time in years until someone develops a heart attack (Altman, 1991)”.

Failure time or survival time, as well as event time is called the response variable of survival
analysis. To analyze data in which the time until the event is the main outcome or of interest,
researchers/study Investigators use survival methods of analysis to analyze such data. The failure
time is usually continuous and hard to be determined for some subjects, ‘that is for some subjects
we may know that their survival time was at least equal to sometime t; Whereas, for other
subjects, we will know their exact time of event (Altman, 1991).”” “Survival time responses that
have not been observed completely are said to be censored, and if there is no censoring, standard

regression procedures could be used to predict the outcome (Machin,et.al 2006).”’



Other lectures and papers in introduction to survival analysis indicate that time to event is
restricted to be positive and has a skewed distribution making these to be inadequate. “’The
probability of surviving past a particular point in time could be of more interest than the expected
time of event, in this case, the hazard function used for regression in survival analysis, can lend
more insight into the failure mechanism than simple regression (Kleinbaum & Mitchel, 1996).”’
In survival methods of analysis, subjects are followed over a specified period and focus being on
the time at which the event of interest occurs.

2.2 Censoring

Survival data is sometimes censored, censoring occurs when information about the survival time
of some individuals is incomplete (Kleinbaum et. al,1996). Censoring is an important issue in
survival analysis; it represents a specific form of missing data. The foremost ideal data for
survival analysis are those yielded by cases within which the time of treatment is clearly
established, and all participants are followed up until they experience the event (In, Junyong and
Dong Kyu Lee. “Survival analysis: Part 1 — analysis of time-to-event,” page 183). A lecture in
Introduction to Survival Analysis indicates that there are generally three reasons why censoring
might occur; a subject does not experience the event before the study ends; a person is lost to
follow-up during the study period and a person withdraws from the study. (Kleinbaum et.
al,1996).

There are three general types of censoring, right and left and interval censoring (Leung. et al.,
1997). (In, Junyong and Dong Kyu Lee. “Survival analysis: Part 1 — analysis of time-to-event,”
page 183) states that t right censoring is the common form of of censored data that researches
mostly encounter, within which the event of interest does not happen to the subject at the end of
the study period (end-of-study censoring) or the observation is terminated for reasons other than
death (loss-to-follow-up censoring) (Kleinbaum et. al,1996). Right-censored data can increase
the estimated overall survival time but may cause bias. Interval-censoring occurs in survival
analysis when the time until an event of interest is not known precisely (and instead, only is
known to fall into a particular interval). Such censoring commonly is produced when periodic
assessments (usually clinical or laboratory examinations) are used to assess if the event has

occurred. Left censoring concerns cases with unclear first exposure to the treatment event prior



to inclusion in the study. Left censored data can occur when a person’s survival time becomes
incomplete on the left side of the follow up period. Censored observations may not only be due
to losses to follow-up or administrative cessation of the period of consideration but can also be
due to events not of interest. This situation is problematic if these “other events” preclude
observation of the primary event under consideration. In survival analysis, censoring should be
non-informative (participants who drop out of the study should do so due to reasons unrelated to
the study.) Informative censoring occurs when participants are lost to follow-up due to reasons
related to the study, for example in a study comparing disease-free survival after two treatments
for cancer, the control arm may be ineffective, resulting in more recurrences and patients

becoming too sick to follow-up.

2.3 Survival Function, S(t)

According to (In, Junyong and Dong Kyu Lee. “Survuval analysis: Part 1 — analysis of time-to-
event,” page 183), they defined survival function as the probability of the outcome event not
occurring up to a specific point in time, including the time point of observation (t), and is
denoted by S(t). That is, if the event is “recurrence of back pain,” it is the “probability of not
having back pain” up to a specific time. In the survival function,t = 0 corresponds to a
probability of 1.0 (i.e., 100% survival at the onset), and the point in time with 50% survival
probability is the median survival time. (Kleinbaum et. al,1996).

Let T be a non-negative random variable denoting the time to a failure event. The survivor
function S(t) gives the probability that a person survives longer than some specified time t: that
is, S(t) gives the probability that the random variable T exceeds the specified time t (Kleinbaum
& Klein, 2005). In other words, the survivor function also known as survivorship function is
simply the reverse of the cumulative probability function of T. Where the cumulative distribution

is given by

F(t) =Pr(T <) = [, f(wdu (1)

and the survival function, S(t), is defined to be the probability that the survival time is greater
than or equal to t, and is given by
St)=P(T>t)=1—-F(t) (2)



It is simply the probability that there is no failure event prior to time t. The survivor function can
therefore be used to represent the probability that an individual survives from the time origin to
sometime beyond t. The function is equal to 1 at t=0 and decreases toward zero as t goes to

infinity (e0). The probability density function is expressed as;

[ =52 =220 = —5'(©) 3)

The hazard and survival functions are alternative forms of describing the distribution of survival
times. The survival time is most useful for comparing the survival progress of two or more
patient groups, the hazard function since it is an instantaneous measure gives a more useful
graphical description of the risk of failure at time t. Hazards and survival functions can be
expressed in terms of each other (Machin, Cheung, & Parmar, 2006).

2.4 Hazard Function, h(t)

According to Cleves, Mario’s Introduction to Survival Analysis Using Stata, 2™ edition, page 7,
they define “the hazard function or conditional failure rate as the instantaneous rate of failure. It
is the limiting probability that the failure event occurs in each interval, conditional upon the
subject having survived to the beginning of that interval, divided by the width of the interval
(Cleves. et al., 2010).”

The hazard function is widely used in survival analysis by researchers to express the risk or
hazard of death at some time t and is obtained from the probability that an individual dies at time
t, conditional on he or she having survived to that time (Lalanne & Mounir, 2016). (Collect,
David, in his book called Modelling Survival data in medical Research, 2" edition states that”
the ratio of the number of events occurring during the entire study period to the total number of
observations is termed the “incidence rate.” For example, if the event is death, mortality is the
incidence rate. However, since the incidence may not be constant throughout the study period, it

may be necessary to calculate the incidence rate at a specific time (t).”

First, the incidence rate for the period between a specific time t and the next measurement
time t + o can be calculated by dividing the number of events occurring between t and t + o by
the total number of observations at time t. By a approaches 0, i.e., by taking the limit as the

interval between t and t + o closest to 0, the instantaneous incidence rate at t, which constitutes

9



the hazard, can be calculated. The hazard function is a function for calculating the instantaneous
incidence rate at any given point in time and is denoted by h (t). “The function h(t) is also
referred to as the hazard rate, the instantaneous death rate, the intensity rate, or the force of
mortality. (Cleves. et al., 2010).” (In, Junyong and Dong Kyu Lee. “Survival analysis: Part 1 —
analysis of time-to-event,” page 184) .

In simple terms it is the probability that an individual encounters an event of interest at time t,
conditional on having survived to that time. If t is a continuous function with density function f,

then the hazard function is defined by:

Pr(¢<Tst+ At|T>t) _ f(¥)

h(t) =limAt_)0 AL = )

(4)
Thus, the hazard function, h(t), is the instantaneous rate at which events occur, given no previous

events.

2.5 Hazard Ratio (HR)

“The hazard ratio has been specifically developed for survival data and is used as a measure of
the relative survival experience of two groups” (Machin, D. et al. “Survival Analysis: A Practical
Approach,” page 12). Survival analysis hazard ratio aims at obtaining the ratio of two hazards, it
compares the hazard of one group against the hazard of another. This method allows for the
censoring which occurs in nearly all survival data (Machin, Cheung, & Parmar, 2006). For
instance, suppose that patients are randomized to receive either a standard treatment or a new
treatment, and let h(t) and hy(t) be the hazards of death at time t for patients on the standard
treatment and new treatment, respectively. This proportional hazard model can be expressed in

the form
hy(t) = @hg(t), (5)

For any non-negative value of t, where @ is a constant. An implication of this assumption is that
the corresponding true survivor functions for individuals on the new and standard treatments do
not cross. The value of @ is the ratio of the hazards of death at any time for an individual on the
new treatment relative to an individual on the standard treatment, and so @ is known as the

relative hazard or hazard ratio.

10



The hazard ratio is the ratio of the hazard rates corresponding to the conditions described by two
levels of an explanatory variable as defined by (Hazard Ratio- Wikipedia). The hazard ratios
represent instantaneous risk over the study time period or some subset thereof. Ifa @ < 1, the
hazard of death at time t is smaller for an individual on the new drug, relative to an individual on
the standard. The new treatment is then an improvement on the standard. On the other hand, if
@ > 1, the hazard of death at time t is greater for an individual on the new drug, and the standard
treatment is superior. The hazard ratio, @, of 1 corresponds to equal hazards between the two
groups. While a hazard ratio, @, of 2 implies that at any time twice as many in the treatment

group are having an event proportionately compared with the control group (Deurden., 2009).

2.6 Non-time-varying covariates

Literature shows that the Cox regression model has been used widely in the analyses of time to
even data. The Cox proportional hazards (PH) model is the widely used approach in survival
analysis of clinical trials because it requires a few assumptions (Ngwa, et al., 2016). The model
was proposed by Cox in 1972 for analysis of survival data with and without censoring; for
identifying differences in survival due to treatment and prognostic factors in clinical trials
(Singh, Ritesh and Keshab Mukhopadhyay. “Survival analysis in clinical trials: Basics and must
know areas,” page 146). The Cox proportional hazards (PH) model allows one to explain the
survival time as a function of multiple prognostic factors (Lalanne & Mounir, 2016). This model
relies on a fundamental assumption that the proportionality of the hazards, implying that the
factors investigated have a constant impact on the hazard - or risk - over time. However as
observed by Ponnuraja and Venkatesan (2010), this is not appropriate all the time as the
assumptions do not hold always. If time-dependent variables are included without appropriate
modeling, the PH assumption is violated and this leads to deriving misleading effect estimates,
and significant effect in the early (or late) follow-up period may be missed (Bellara, MacGrogan,
Debled, & Brouste, 2010). Unfortunately, most researchers in practice often do not test models’
assumptions for fitted models and this practice does not spare the fitting of Cox PH model
(Stanley, Molyneux, & Mukaka, 2016). Checking the proportionality of the hazards should thus
be an integral part of a survival analysis by a Cox model. (Bellera, Carine et al. “Variables with
time-varying effects and the Cox model: some statistical concepts illustrated with a prognostic

factor study in breast cancer”™).
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“Models that can accommodate time-dependent covariates are commonly used in biomedical
research but sometimes do not explicitly adjust for time in the model. Not adjusting for time can
yield different estimates of association compared to a model that adjusts for time.” (Ngwa, et al.,
2016). When analysing survival data and time-varying covariates or coefficients are present, an
analyst should consider taking them into account in survival modeling to improve the estimation
(Zhang, Zhongheng, 2018).

2.7 Time-varying covariates

A time-dependent variable is defined as any variable whose value for a given subject may differ
over time (t). In contrast, a time-independent variable is a variable whose value for a given
subject remains constant over time (Kleinbaum & Mitchel, 1996). When explanatory variables
do not change over time or when data is only collected for explanatory variables at one time
point, it is appropriate to use static variables to explain the outcome. On the other hand, there are
many situations where it is more appropriate to use time varying covariates. Using time varying
explanatory variables, when appropriate, is more robust because it utilizes all available data
(Allison, 2010).

Time-varying covariance occurs when a given covariate changes over time during the follow- up
period, which is a common phenomenon in clinical research (Zhang, Zhongheng, 2018). “For
example, in a patient with sepsis, the C- reactive protein (CRP) may be measured repeatedly to
evaluate inflammatory status until it returns to normal. In clinical oncology, the recurrence status
of a patient is usually checked at a predefined time interval. In many cases when studying the
relation between a survival outcome and covariate(s), investigators will only consider the
baseline value of the covariate, which however, fails to consider the relation of the survival
outcome as a function of the change of the covariate. For example, the effect of smoking on
status is ever changing during the follow up period. Such a covariate can be considered as a time

-varying covariate.” (Zhang, Zhongheng, 2018).

2.8 Models in Survival Analysis
This subsection explores the relationship between survival experience of an individual and

explanatory variables using an approach based on statistical modelling. Two broad classes of
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regression models are considered: Proportional Hazard (PH) Models and Accelerated Failure
Time (AFT) Models. Models used to describe survival time in a comparative sense are often
called semi-parametric regression models and are the major focus of this thesis. We will also
distinguish between semi-parametric and parametric models but for the purpose of this thesis,
Cox PH models and Extended Cox models will be discussed in detail. These models suggested in
the literature include the Cox semiparametric proportional hazard model and some parametric
models like the exponential model, and Weibull Model, Gomperz (Gamma) and Log-Normal

model.

2.8.1 Non-parametric models
The first approach in survival model fitting is a non-parametric strategy that focuses on
estimation of the regression coefficients leaving the baseline hazard d,(t) completely
unspecified. This approach relies on a partial likelihood function proposed by Cox (1972) in his

original paper.

2.8.1.1 Kaplan-Meier survival estimate
The Kaplan—Meier estimator is the nonparametric maximum likelihood estimator of the

underlying survival function (Kaplan and Meier, 1958). The Kaplan-Meier (KM) method is a
non-parametric method used to estimate the survival probability, S(t), from observed survival
times (Kaplan and Meier, 1958). It is a popular method because it requires very weak
assumptions (assumes no form of distribution) but utilizes information content of both fully
observed and right censored data. Suppose that n individuals have experienced an event of
interest, such as death in a group of individuals. If we let 0 <t; <--- < t,be the observed

ordered death times. Let n; be the number of individuals who are at risk at t.,,. Let z; be the
number of observed deaths at t;, i= 1...n. Then the Kaplan Meier estimate at any time t is given

by

SA(t) = Hi:TiSt e~ = Hi:'fist 1 - ﬁ ’ (6)

Ti Ti

where r; is the number of individuals at risk at time t;, and the product is overall observed failure

times less than or equal to t (Kaplan. & Meier., 1958). The estimator is a step function that
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changes values only at the time of each. It is also possible to compute confidence intervals for
the survival probability. The KM survival curve, a plot of the KM survival probability against
time, provides a useful summary of the data that can be used to estimate measures such as
median survival time. (Etikan, Abubakar, & Alkassim, 2017)

2.8.1.2 Log-rank test or Mantele-Haenzel test
Another possible objective of the analysis of survival data may be to compare the survival times

of two or more groups. A simple test of statistical significance is the log-rank or Mantele-
Haenzel test. Comparison of two survival curves can be done using a statistical hypothesis test
called the log rank test. It is used to test the null hypothesis that there is no difference between
the population survival curves (i.e. the probability of an event occurring at any time point is the
same for each population). The test statistic is calculated as follows:

(01 — Ey)? + (0, — E;)?
Ey E,

x?(logrank) = (7)

Where the O;and O;are the total numbers of observed events in groups 1 and 2, respectively,
and E; and E; the total numbers of expected events.

The log rank test is used to test whether there is a difference between the survival times of
different groups, but it does not allow other explanatory variables to be taken into account or

considered.

2.8.1.3 Partial likelihood estimator
Cox (1972, 1975) introduced the ingenious partial likelihood principle to eliminate the infinite

dimensional base-line hazard function from the estimation of regression parameters with
censored data. In a seminal paper, Andersen and Gill (1982) extended the Cox regression model
to general counting processes and established the asymptotic properties of the maximum partial
likelihood estimator and the associated Breslow (1972) estimator of the cumulative base-line
hazard function via the elegant counting process martingale theory. The maximum partial
likelihood estimator and the Breslow estimator can be viewed as non-parametric maximum
likelihood estimators (NPMLES) in that they maximize the non-parametric likelihood in which
the cumulative base-line hazard function is regarded as an infinite dimensional parameter
(Andersen et al. (1993), pages 221-229 and 481-483, and Kalbfleisch and Prentice (2002),
pages 114-128).
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Intuitively, it is a product over the set of observed death times of the conditional probabilities of
seeing the observed deaths, given the set of individuals at risk at those times. It is given by

n ex(i)H
LO) = | |e—— (8)

X
i=1 ZjER(t(n) e

Where the product is over n death (or failure) times. The contributions occur only at death times.
The partial likelihood is not a product of independent terms, but conditional probabilities.

In 1975 Cox provided a more general justification of L as part of the full likelihood—in fact, a
part that happens to contain most of the information about _—and therefore proposed calling L a
partial likelihood. This justification is valid even with time-varying covariates. A more rigorous
justification of the partial likelihood in terms of the theory of counting processes can be found in
Andersen et al. (1993).

2.8.1.4 The Nelson-Aalen Estimator
Consider estimating the cumulative hazard 8(t). A simple approach is to start from an estimator

of S(t) and take minus the log. To estimate and plot the cumulative hazard function, the Nelson-
Aalen estimator can be used. The Nelson-Aalen estimator is a non-parametric estimator of the

cumulative hazard function;

S d
6(tq) = Zr_] 9)
j=1"

Intuitively, this expression is estimating the hazard at each distinct time of death t;) as the ratio

of the number of deaths to the number exposed. The cumulative hazard up to time t is simply the
sum of the hazards at all death times up to t, and has a nice interpretation as the expected number
of deaths in (0, t] per unit at risk. This estimator has a strong justification in terms of the theory
of counting processes.

Breslow (1972) suggested estimating the survival function as

S(t) =exp {—@(t)}, (10)

15



where (t) is the Nelson-Aalen estimator of the integrated hazard. The Breslow estimator and
the K-M estimator are asymptotically equivalent, and usually are quite close to each other,
particularly when the number of deaths is small relative to the number exposed.

2.9 Semi-parametric models

The second approach to survival model fitting is regarded to be a flexible or semi parametric
strategy, where mild assumptions about the baseline hazard 6,(t) are applied. Using this
approach, time is subdivided into reasonably small intervals and the assumption that the baseline
hazard is constant in each interval is applied leading to a piecewise exponential model (Altman,
1991).

2.9.1 Cox Proportional Hazard Model
The basic model of consideration in this thesis is the proportional hazard model proposed by
cox(1972). The model has come to be known as the cox regression model; although assumptions
of proportional hazards are the base for this model, there is no form of a probability distribution
that is assumed for the survival times, and this model is therefore referred to as semi-parametric
model. Apart from the mentioned assumptions, the Cox assumes that the hazards are
proportional and from model estimation it uses partial likelihood which is more generalized than

the maximum likelihood (Hosmer, Lemeshow, & May, 2006).

This is the most common approach used in research to model the effects of covariates on survival
when analyzing survival data, and since the only assumption made is on the proportionality of
the baseline hazard; it therefore means that the hazard ratio is constant over time or that the
hazard for an individual is proportional to the hazard for any other individual. (Therneau &
Grambsch, 2000). The model can be used for comparison of the hazard functions for individuals
in two groups as it also takes into account the effects of censored observation. (Cox., 1972).
Defined as: Let x4 ... ...... xibe the values of n covariates X; ... ....... X, the hazard function is
then given as follows as this model (Cox regression model).

h(t) = hy(t) exp (Zk_ 5; xi>, 11

i
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Where §; = (81,9,,6,) is a (1 x k vector of regression coefficients and h,(t) is the baseline

hazard function at time t.

The study goal is addressed by the regression model for the hazard function below:
h(t,x,6) = hy(t)r(x,d), (12)

Equation (12) above is the product of hazard function h,(t)and the function of subject covariates
r(x,8). The way how the hazard function changes as a function of survival time is given by the
hazard function hy(t) . While the function r(x,&), characterizes how the hazard function
changes as a function of subject covariates (Hosmer & Lemeshow, 1999). The functions should
be chosen such h(t,x,8) > 0. Note that hy(t) is the hazard function when r(x, ) = 1. When
the function r(x, §) is such that r(x = 0,68) = 1, hy(t) is frequently referred to as the baseline
hazard function. The ratio of the hazard functions for two subjects with covariate values denoted

x, and x, in equation (12) is given by;

h(t,x{,6
HR(t,x1,x,) = %, (13)
So
_ hO (t)r(xl, 5)
HR( X1, %0) = )1 e, 0)
_ (x4, 6)
S0 P

The function r(x,8) is the only function the hazard ratio (HR) depends on. Cox (1972)
suggested that using r(x,8) = exp(x6), with this parameterization as a founder of the model in
(12), the hazard function is

h(t,x,8) = ho(t)e*® (15)
and the hazard ratio is

HR(t, xq,x,) = e¥*17%0) (16)
Many researchers in the literature will refer to this model by different names. Some literature
will term it the Cox model whereas the others will term it the cox proportional hazards model or

simply the proportional hazards model.
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For example, in trial that compared the rate of deaths among the two gender groups where
gender is a covariate and is dichotomous, with a value of x; =1 for males and x, =
0 for females, the hazard ratio in (10)becomes

HR(t,x1,%,) = €9, (17)
If the value of the coefficient is § = In(3), then the interpretation is that males are dying at three
times the rate of females. The survivorship function in Cox model is given by the following
equation
S(t,x,8) = [So()] ¥ (18)
The hazard function described in this section are called semi-parametric functions since they do

not explicitly describe the baseline hazard function, hy(t).

2.9.2 Extended Cox Model
The Cox proportional hazard model whose general form is illustrated in the equation (19) below,
presents a function for the hazard at the time t for an individual with a given specification of a set
explanatory variables denoted by X. The X represents a vector of explanatory variables that are
modelled to predict an individual’s hazard.
R(EX,) = ho(Dexp[ZE, B X/] (19)
or as

h(¢1X;) = ho(Dexp(X;f) (19)

where, X = (X,....,X,)" isa (kx 1) vector of predictor or explanatory variables and f =

(B1, -, Br) isthe a (kx 1) vector of parameters.

The Cox model formula above states that the hazard at time t is a product of two functions, the
baseline hazard function hy(t) and the exponential function e to the linear sum of g;X;, where
the sum is over the n explanatory X variables. The most important feature of the formula above
entails the proportional hazards (PH) assumptions underlined in the model application. This
feature is that the baseline hazard function is a function of t, it does not involve X’s, whereas the
Exponential function involves X’s but does not involve t. In this particular case the X’s are said

to be time-independent.
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In some cases, however, it is possible to have X’s that do involve t, and such X’s are referred to
as time-dependent X’s. If these variables are considered, the Cox Ph model form can still apply
even though such a model does not satisfy the Proportional hazards assumption. When this

happens, it now called the extended Cox model, and its general form is as follows:
h(t, X(£)) = ho(D)exp[Ti2; BiX; + 272, 6;X; (D] (20)

In simple terms, the extended Cox model is a Cox regression model which has the addition of a
dependent time variable on variables that do not meet the proportional hazard assumption. From
the equation above, the extended Cox PH model also includes the baseline hazard function h,(t)
which is multiplied by an exponential function just like the Cox proportional hazard model but
unlike in the Cox proportional hazard model, the extended Cox model includes both time-
independent predictors denoted by X; variables and the time-dependent predictors denoted

byX;(t) variables in the exponential part. (Therneau & Grambsch, 2000). In this case X(t)

denotes the entire vector of predictors at time t.

The regression coefficients in the extended Cox model are estimated using a maximum
likelihood procedure just as it is the case with the Cox proportional hazard model. However, the
calculations for the latter are more complicated than those of the Cox proportional hazard model
since the risk set used to form the likelihood function become more complicated as they include
time-dependent variables in them (Hosmer & Lemeshow, 1999). Whereas the statistical
inferences methods are essentially the same as for both models where Wald test or likelihood

ratio (LR) test can be used and also the large sample confidence interval methods.

The effect which a time-dependent variable X;(t) has on survival probability at time t depends
on the value of the said variable at the same time t and not on the value at an earlier or later time.
This is an important assumption of the extended Cox proportional hazard model and that is, the
hazard at time t depends on the value of X;(t) at the same time (Hosmer & Lemeshow, 1999).
The values of the variable X;(t) may change over time but the hazard model provides only one

coefficient for each time dependent variable in the model. This statement simply says that, at a
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given time t, there is only one value of the variable X;(t) that influences the hazard, that value

being measured at time t.

The formula for the hazard ratio as derived from the extended Cox model is as shown below:

h(t.X"(t)

HR(t) = r(tx(©)’

(20)

= exp[Zi2, B(X; — X)) + 72, §;(X7 () — X(1) ] (21)

The assumption of the proportional hazards is not satisfied when we apply the extended Cox
model. The general hazard ratio formula for the extended Cox model is as shown in equation 21
and describes the ratio of hazards at a particular time t, and requires the specification of two sets
of predictors at time t. These two sets are denoted as X*(t)and X(t). “The two vectors of
predictors, X*(t)and X(t), identify two categories at time t for the combined vector of
predictors containing both time-independent and time-dependent variables” (Ingabire, Mwalili,
& Orwa, 2015).

2.10 Parametric Survival Model (AFT)

Literature shows that different types of parametric models have been used, suggested, or
proposed for use with survival data. James (1988) cite that the hazard functions shapes
associated with most of these models can be classified as; constant, monotonically increasing,
monotonically decreasing, U-shaped, and bell-shaped. Unknown parameters values are the ones
that makes a hazard function to take on a variety of shapes. Gross and Clark (1975) cite
individuals whose only risks of death are accidents or rare illness as an example of a population

where a constant hazard is applicable.

To run away from specifying the hazard function completely, we employed nonparametric or
semiparametric models for the analysis of censored survival time data in so doing reducing the

set of assumptions required to supply the hazard ratios formed from the coefficients whose
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clinical meaning can easily be explained. Aside from the nonparametric or semiparametric
models, we have parametric methods available to use in situations where the distribution of
survival time is known from prior research. (Hosmer & Lemeshow, 1999) states that these
models have advantages in terms of; using a full Maximum likelihood to provide estimates to the
parameters; the Coefficients can be clinically meaningful and for some models are related to
those from a proportional hazards model; survival time estimates can be determined by the fitted
values; and Residuals can be computed that are different between observed and predicted values
of time. Analysis results of using a fully parametric model can have bring a normal error as that
of a linear analysis (Hosmer & Lemeshow, 1999).

Wei (1992) suggests that the parameters within the AFT models will be easily understood by
clinical investigators as they are interpreted as effects on the duration than the hazard ratios.
Fisher (1992) on the other hand commented that most research-oriented clinicians have little or
no trouble understanding the proportional hazards model or the hazard ratio. Investigators in
research have employed the proportional hazards model as seen from the literature. This is so as
it has become the standard method for multivariate analysis for survival times in many applied
settings. These models also can provide concise and simply interpreted analysis as discussed on
the benefits earlier as some even have proportional hazards and may be ready to provide an
alternate way of explaining covariate effects albeit the PH models interpretation would be first

choice.

When survival time is assumed to follow a known distribution, it is referred to as a parametric
survival model. Some of distributions that are used for survival time in research are: the
lognormal, the log-logistic, the Weibull, the exponential (a special case of the Weibull), and the
generalized gamma. The Cox proportional hazards model is a semiparametric model as listed in
the sections above because even when we have known regression parameters, the distribution of
the result/outcome are unknown. That is why the baseline hazard function is not laid out in a Cox

model.
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2.10.1 The Weibull Model
The Weibull distribution is one of the continuous distributions in probability theory and
statistics. From literature, the Weibull model is found to be the most widely used parametric
survival model. Weibull distribution can be employed in data if survival hazard function
increases or decreases monotonically with an increase in survival time. Cox proportional hazard

model uses Weibull distribution whose hazard function, for t>0, follows:

h(t) = 6zt? 1, (22)
where zand 6 > 0.
The survival function is given by
S(t) = exp (—0t?), (23)
The density function,
f(t) = 0zt? ! exp (—0t?), (24)

The Weibull distribution is a generalization of the exponential distribution and is characterized
by 8 which is the scale parameter and will be reparametrized with regression coefficients as it is
with the exponential model. The additional parameter z is called a shape parameter. The shape of
the hazard function shape is determined by z, the shape parameter. For example, If the shape
parameter z > 1 then the hazard increases as time increases. The hazard is constant if the shape
parameter z = 1 and the Weibull model is reduced to the exponential model (exponential
distribution is generated) . If the shape parameter z < 1 then the hazard function decreases over
time. The Weibull model is given greater flexibility by p than the exponential model yet the

hazard function remains relatively simple.

The shape parameter z and scale parameter & makes it impossible to have two-dimensional
sufficient statistics hence there has been much work done with the Weibull distribution (Lawless,
1982). The Weibull model possess the unique property in that if the AFT assumption does not
hold then the PH assumption does not hold also (Cox and Oakes, 1984).
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In absence of a close form solution, numerical optimization are used in order to get the
maximum likelihood estimates. A lot of work with the Weibull distribution has been done since

there are no two-dimensional sufficient statistics for & and z (Lawless, 1982).

2.10.2 Log-Logistic Model
Unlike the Weibull distribution described above, the hazard function for the log-logistic
distribution allows for a couple of nonmonotonic behavior within the hazard function. The log-
logistic hazard has the following form;

0ztz~1

1+ 0t%

h(t) = (25)

, (Where z>0and 6 > 0)

The log-logistic distribution can work with an AFT model but not a PH model. The shape
parameter is (z > 0). If z < 1 then the hazard decreases over time. If z > 1 , however, the
hazard increases to a maximum point then decreases over time. During this case (z > 1), the

hazard function is claimed to be unimodal.

The survival odds are the odds of surviving beyond time t (i.e.,S(t)/(1 — S(t)).
S  Z(T>¢)

(1 —-S(t) Z(T<t)

This is the probability of the event not happening in time t divided by the probability of getting

(26)

the event by time t. The failure odds are the odds of getting the event by time t
(i.e., (1 —=S(t)/ S(t)), which is the reciprocal of the survival odds

(1 -S@®) Z(T<t)

Sty  Z(T>t) @7)
The log-logistic survival function (S(t))
S(t) = (28)

1+ 6t

and failure function (1 — S(t))
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At?

1-S5@) = 29
S 1+ 6tz (29)
in a log-logistic model, the failure odds are simplified to 6t*
~ _1+0t%2 _ .,
50 1 ot (30)
1+ 0t

2.10.3 The Exponential Regression Model
The exponential distribution is different with the other distributions like the Weibull and log
logistic distributions which have two parameters 6 and z, the exponential distribution is a one-
parameter distribution with a constant hazard 6. During the overview with the Weibull
distribution in section (2.10.1) above, we saw that the exponential distribution was generated if
the shape parameter z = 1. The product of h(t) and S(t) will give use the probability density
function for this distribution. The exponential model, which is the simplest parametric survival

model in that the hazard is constant over time (i.e., h(t) = ).

For the Exponential, S(t)
exp(—0t)
reparameterization of S(t) as an AFT model is shown below.
S(t) = exp(—6t)

t=[—In(S(t)x %

1
let — =exp (6, + 8,x) ,equivalent to 6 = exp[—(8y + 6:%)]

0
By reparameterization, we get
t=[-In(5))] exp(5y + %) (31)
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median survival time is found by substituting S(t) = 0.5 in above equation
and the h(t)
0
, the exponential hazard is constant and can be parametrized as a PH model,
h(t) = 6 = exp —(6y + 6:%)
The hazard ratio for a dichotomous covariate is
HR(x =1,x=0) = exp—(6,) (32)

James (1988) cites that the exponential distribution manifest clearly the unique memoryless
property since the hazard function is independent of t. James (1988) further cites that it is for this
property and ease of estimation that provides justification for its use in survival studies and
biomedical application. In summary, defined for t>0, the hazard function is 6(t) = @, survival
function, S(t) = exp(—6t), and the density function, f(f) = 6 exp(—6t).

The exponential model is a proportional hazards model making it an accelerated failure time
(AFT) model. Cox and Oakes (1984) show that the only AFT models that have proportional
hazards are exponential and Weibull regression models. If an exponential regression model fits
the data, one may express the effect of covariates as a time ratio or a hazard ratio. The
assumption that the hazard is constant for each pattern of covariates outweighs the PH
assumption. If the hazards are constant, then of course the ratio of the hazards is constant.
However, the hazard ratio being constant does not necessarily mean that each hazard is constant.
In a Cox PH model, the baseline hazard is assumed to be a variable. In fact, no studies have
specified, the form of the baseline hazard is not even specified. To estimate regression
coefficients, maximum likelihood estimators (MLE) are used and they tend to be normally
distributed. (Kleinbaum & Mitchel, 1996)

The key assumption for survival models has been the proportional hazard assumption. However,
parametric survival models should not always be PH models. Many parametric models are
acceleration failure time models and not PH models. The exponential and Weibull distributions
can use both the PH and AFT assumptions (Kleinbaum & Mitchel, 1996). The interpretation of

parameters is different for AFT and PH models. The AFT assumption is valid for a comparison
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of survival times whereas the PH assumption is applicable for a comparison of hazards. The base
assumption for AFT models is that the effect of covariates is multiplicative (proportional) with
respect to survival time, whereas for PH models the underlying assumption is that the effect of

covariates is multiplicative with reference to the hazard (Kleinbaum & Mitchel, 1996).

2.10.4 Generalized gamma model
The generalized gamma model is one of the parametric survival models which is also a
generalization of the exponential distribution. Both the hazard and the survival function for this
model are complicated and can only be expressed in terms of integrals. (Kleinbaum & Mitchel,
1996). The generalized gamma distribution has only three parameters allowing for flexibility in
its shape. The Weibull and lognormal distributions are special cases of the generalized gamma
distribution (Kleinbaum & Mitchel, 1996).

2.10.5 Lognormal model
Kalbfleisch and Prentice (1980) cite that the lognormal model is easy to use if there is no
censoring occurring since the likelihood function does not involve the incomplete normal
integral. When censoring occurs, it is almost impossible to do the computations. When this

happens, the log-logistic distribution provides a good approximation to the log-normal model.

The hazard function for this distribution is given by

1 _(logt — 2
oD,

where ¢ is the cumulative distribution function of standard normal variable and § > 0.

The survival function is given by

S) = 1- ¢ (22=2), (34)
and the density function by
log t— u\ 2
()= ——exp[ - (EZ2) T, (35)
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The lognormal model has a relatively complicated hazard and survival function that can only be
expressed as integrals (Kleinbaum & Mitchel, 1996). The shape of the lognormal distribution is
very similar to the log-logistic distribution and yields similar model results. The difference is that
although the lognormal model accommodates an accelerated failure time model, it is not a
proportional odds model.

2.10.6 The Gompertz
The Gompertz distributions are widely used in actuarial work in literature. The following hazard
function describes the distribution well:
0(t) = exp (z + yt), (36)
The survival function is given by

s®=exp[ —% (exp &0) ~ DI, (37)

And the density function,
1
f(t) = exp | (z+yt) — ; (exp (z + yt) —e?)], (38)

when z=0, the Gompertz distribution reduces to the exponential distribution. Parametric models
need not be AFT models. The Gompertz model is a parametric proportional hazards model but
not an AFT model. The model can be expressed in a form like that of a Cox PH model except
that the baseline hazard is specified as the hazard of a Gompertz distribution containing a shape

parameter v.

2.11 Model parameter estimation

Maximum likelihood estimation is used to estimate the unknown parameters of the parametric
distributions. Kalbfleisch & Prentice,( 1973) derived a likelihood involving on
B and Z (not Ay(t)) based on the marginal distribution of the ranks of the observed failure
times (in absence of censoring). Cox (1972) derived the same likelihood and generalized it for
censoring using the idea of a partial likelihood. If Y, is uncensored, the nth subject contributes
f (Y)to the likelihood. If Y, is censored, the nth subject contributes Pr(y > Y,)to the
likelihood. The joint likelihood for all p subjects is
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L= HfﬁﬁFl f) H?:BFO Sy, (39)

The log-likelihood can be written as

p 14
logL = z log(h(Y)) — ZH ;) (40)
i: Bi=1 i=1

2.12 Model Comparison
2.12.1 Evaluation Criteria

Several survival models with semi-parametric or parametric approaches are used in different
fields including medical, natural, and social sciences. The choice of the foremost appropriate
model for data at hand is as important as the analysis itself. In literature available, it has been
noted that the likelihood-based model selection for example Akaike information criteria (AIC) or
Bayesian information criteria (BIC) are used to select among nested models. The AIC has been
used as a measure of goodness of fit that balances model fit against simplicity. (Akaike, 1981)

while BIC has been used as a similar measure (Simonoff, 2003) .

2.12.2 Akaike’s Information Criterion

Akaike’s information criterion named after Hirotugu Akaike, (1927-2009) provides an estimator
for predicting error and the relative quality of Statistical models. The AIC compares related
models and helps in selecting a model that fits the available data with less margin of error (Glen,
2015). The formula for AIC is given below:

AIC = =21(9y,) + 2p, (41)

penalizes the maximized log-likelihood with the number of parameters p. The criterion is
negatively oriented, i.e., the model with minimal AIC is selected. Therefore, a difference of 2q is

sufficient for a model with g additional parameters to be preferred (Akaike, 1981).

2.12.3 Bayesian Information Criterion
As an alternative to the AIC, we sometimes use the Bayesian information criterion with the

formula below:

BIC = —21(9y,) + p log (n), (42)
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where n denotes the size of the sample. Half of the negative BIC is additionally referred to as the
Schwarz criterion. It has an equivalent orientation as AIC, such models with smaller BIC are
preferred. It penalizes model complexity in general (i.e., if log(n) > 2<n > 8) more distinctly
than AIC.

The AIC is a way of putting off the complexity of an estimated model against how well the
model fits the data. For this study models discussed, the AIC was given byAIC = —2*
log (likelihood) + 2(p + k), (43)

Where p is the number of parameters, k=1 for the exponential model, k=2 for the Weibull, log-
logistic, and log normal models (Klein et al., 1997). Lower AIC indicates better likelihood.
Other studies in literature use just the Akaike information criterion (AIC) and residues review to

compare the performance of the parametric models.

2.13 Model Diagnosis

This section presents different approaches to assess the assumptions under different models.
These include the use of time varying covariates, Cox Snell for goodness of fit test and graphical
approach using Schoenfeld residuals. Three approaches are also used for evaluating the
proportional hazards (PH) assumption of the Cox model—a graphical procedure, a goodness-of-

fit testing procedure, and a procedure that involves the use of time-dependent variables.

2.13.1 Cox Snell Residuals
The use of the Cox-Snell residuals is goodness of fit of the Cox PH model. As defined by Collet
(2003), Cox-Snell residuals are given as
rC; =exp (é’xi) Hy(t;) (44)
When assessing the model, the plot of the integrated hazard based on the residuals against the
hazard rate estimates backed out of the Cox model should have a 45-degree slope. Therefore, if

the Cox model fits, then the residuals should be distributed as unit exponential.
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2.13.2 Schoenfeld Residuals
The idea behind the statistical test is that if the PH assumption holds for a specific covariate, then
the Schoenfeld residuals for that covariate won't be associated with survival time. Schoenfeld
(1982) proposed the primary set of residuals to be used with a fitted proportional hazards model
and packages providing them as the “Schoenfeld residuals.” These are based on the individual
contributions to the derivative of the log partial likelihood. Collet (2003) denotes the ith
Schoenfeld residual for Xj, jth explanatory variable in the model as given by;
rpii = Bl — 651}, (45)
Where xji is the value of the jth explanatory variable, j=1,2,3, ..., p, for each individual in the
study. The schoenfeld residuals are particularly useful in evaluating the PH assumption after
fitting a Cox regression model.

2.13.3 Martingale’s Residuals
Hosmer and Lemeshow (1999) define the martingale residuals as; M,, = C,, — H,
Where the components of the residual for the nth subject are the values of the censoring variable

C,, and the estimated cumulative hazard H,, = H(t,, x,,5).

2.13.4 Time-dependent covariates

The proportional Hazard assumption can also be assessed using the time-dependent explanatory
variables. When this is done the Cox model is extended to contain a product that shows the
interaction involving the time independent variable being assessed and some function of time.
(Hosmer & Lemeshow, 1999). This as explained earlier in this context leads to the extended Cox
model;

h(t,X) = ho(t) exp[6X + oX = g(t)] (46)

When assessing predictors one-at-a-time, the extended Cox model takes the general form shown
above for the predictor X. (Hosmer & Lemeshow, 1999)The test can be carried out using either a
likelihood ratio statistic or a Wald statistic. In either case, the test statistic has a chi-square
distribution with one degree of freedom under the null hypothesis. The extended Cox model in
some cases can also be used to assess the PH assumption for several predictors simultaneously as
well as for a given predictor adjusted for other predictors in the model (Kleinbaum & Mitchel,
1996).
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h(t,X) = ho(®) exp (Zh_; 6pXn+ 0uXn* ga(®)  (47)

The primary limitation to using the extended cox model for assessing the PH assumption
involves selection of functions since different functions will result in different conclusions on
whether PH Assumption is Satisfied (Kleinbaum & Mitchel, 1996).

2.13.5 The log(—log) of S(t)

The proportional Hazard assumption can also be assessed using the time-dependent explanatory
variables. When this is done the Cox model is extended to contain a product that shows the
interaction involving the time independent variable being assessed and some function of time.
(Hosmer & Lemeshow, 1999). This as explained earlier in this context leads to the extended Cox
model;

h(t,X) = hy(t) exp[6X + X * g(t)] (48)

When assessing predictors one-at-a-time, the extended Cox model takes the general form shown
above for the predictor X. (Hosmer & Lemeshow, 1999). The test can be carried out using either
a likelihood ratio statistic or a Wald statistic. In either case, the test statistic has a chi-square
distribution with one degree of freedom under the null hypothesis. The extended Cox model in
some cases can also be used to assess the PH assumption for several predictors simultaneously as
well as for a given predictor adjusted for other predictors in the model (Kleinbaum & Mitchel,
1996).

Rt X) = ho(®) exp (Zhoy SpXn+ 0¥y ga(®))  (49)

The primary limitation to using the extended cox model for assessing the PH assumption
involves selection of functions since different functions will result in different conclusions on
whether PH Assumption is Satisfied. (Kleinbaum & Mitchel, 1996).

2.14 Review of Previous Research

Different survival studies, where the hazards are not proportional, for example in cases where
time-varying covariates are present; researchers have opted not to use a traditional cox model to
model the survival as it would not be ideal. To deal with this situation, a study by Zhang Z et al.

(2018) on Time-varying covariates and coefficients in Cox regression models, recommend that
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when time varying covariates or coefficients are present, an analyst should consider taking them

into account in survival modelling in order to improve the estimation.

On the same, another study by Dekker, et al. (2016) looked at time-dependent effects and time-
varying risk factors. The first approach studied the effect of a fixed baseline risk factor on
Mortality in different time windows (time stratified effects). It resulted in separate HRs for
distinct time windows. In the second approach, a risk factor that changed over time was studied
in relation to subsequent mortality. This approach resulted in one HR that could be considered as
a weighted average of short-term effects on mortality. They noted that the dependence of the
hazard function for an individual on the values of certain explanatory values can be modelled.
When explanatory variables are incorporated in a model for survival data, the values taken by
such variables are those recorded at the origin of the study. The impact of these variables on the
hazard of death is then evaluated (Dekker, Mutsert, van Dijk, Zoccali, & Jager, 2016).

In studies that generate survival data, subjects are monitored for the entire duration of the study
and values for different variables are captured and recorded on a regular basis during this period
as frequent enough as defined by the study. (Machin, Cheung, & Parmar, 2006). Where an
account is taken of the values of the explanatory variables as they evolve through the study, the
resulting model for the hazard of event at any given time would be more satisfactory, this is
because more recent values of variables provide a better reflection of the situation than the

values at time origin of the study.

It is evident that Cox Proportional hazard model has been widely used in survival analysis;
however, all the studies reviewed above identified several weaknesses like overestimation which
make them less suitable than extended Cox regression adopted in this thesis. Cox proportional
hazard model ignores the effect of time dependent variables which makes it weak compared to
extended Cox as it did not take into account the effect of survival times; thus, the main aim of
this thesis is to model childhood mortality reduction after mass azithromycin by comparing Cox
proportional hazard model and extended Cox model and determine which model best explains

the estimates.
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CHAPTER 3
METHODOLOGY

This chapter presents the methodology used for this project. This chapter will describe the
research design and the procedures. In particular, study design; data collection and data
analysis; analysis approach and lastly ethical consideration.

3.1 Study design

The study used secondary data from the MORDOR (Macrolides Oraux pour Réduire les Déces
avec un Oeil sur la Résistance), a cluster-randomized tria. MORDOR was a community-
randomized trial conducted in the Malawian district of Mangochi, the Nigerien districts of
Boboye and Loga, and the Tanzanian district of Kilosa [10]. The 1533 randomization units were
the health surveillance assistant area in Malawi, the grappe in Niger, and the hamlet in Tanzania.
Communities with a population between 200 and 2000 inhabitants on the most recent census
were eligible for enrollment. Enrollment was based on census information available prior to the
study. Communities remained in the study even if the population size drifted out of this
numerical range. Children aged 1-59 months who weighed at least 3800 g were eligible for
azithromycin or placebo. Biannual distributions were performed over each district in a rolling
fashion, over a 6-month prespecified time period (8 months for the initial census and
distribution) [10]. Thus, treatments could be given any time during the year. The estimated time

of death was collected during the subsequent census.

3.2 The MORDOR Data

The MORDOR (Macrolides Oraux pour Réduire les Déces avec un Oeil sur la Résistance) is a
cluster-randomized multi-country trial which was double blinded and collected real time data
using the customized android based WUHA-MORDOR mobile application using salesforce
server database. The application automatically assigned unique IDs to households and

individuals once enrolled and recorded in the mobile application. All household census data and
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individual details were recorded. Upon data synchronization, all information could be retrieved
from the system in the future follow-up visits to that household by searching the household

name.

The MORDOR data was availed for this thesis in stata format. It covered client’s information
from enrollment until death or end of study period (2014 to 2017). The dataset used in this study
contained information on infants only. An infant here was defined as any individual below the

age of 5.

3.3 Data collection and data management

The study data were extracted from the MORDOR Malawi database. The data was extracted in
stata format for the whole study period (2014-2017). The study utilized information collected for
only infants aged 1 — 12 months old from both the intervention and control arm of the study from
Mangochi and Namwera zones of Mangochi district based on the researchers interests and
convenience. Social — demographic characteristics and clinical information were captured from
all subjects enrolled in the study. The socio-demographic characteristics included were age and
sex. The clinical data included date of death, dosage taken and treatment drug letter. All residents
from consented households who were under 5 and were eligible were enrolled in the study and
were treated with oral azithromycin or placebo during rounds of MDA. All this information
(births, deaths, weight and location-GPS) were being entered in the MORDOR database using

MORDOR application on Nexus 7 tablets during census after every 6 months.

3.4 Sample size and sampling procedure

The data for this study was made available through London School of Hygiene and Tropical
Medicine which was one of the implementing partners in Malawi. The data had information on
all subjects who participated in the trial form both arms of the study. A representative sample
was made available for this study which included all children between 1 month to 12 months as
it was the target population for this study. The study analyzed information from two zones in
Mangochi which included Namwera and Mangochi zones. A total of 36,349 infants aged 1 to 12

months were included in the analysis for this study.
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3.4.1 Inclusion and exclusion criterion
The study looked at participants who were aged 1 to 12 months who were enrolled in the study.
The entry point was at least 1 month old and weigh 3800g and should be from Mangochi and
Namwera zones of Mangochi district. All those from other zones, aged more than a month and
weighed less than 3800g were excluded in this study.

3.5 Study Outcome
The outcome variable is the occurrence of death in an individual (a binary indicator variable for
each individual aged 1 to 12 months who were present at baseline).

3.6 Data handling and description

This study data was extracted from the MORDOR Malawi database which was collected upon
approval from the College of Medicine Research Ethics Committee (COMREC) where the
primary study protocol was reviewed and granted ethical approval before any patient-related
research activities began in Malawi. The London School of Hygiene and Tropical Medicine
Interventions Ethics Committee also reviewed the study protocol and granted ethical approval
(reference # 6500). The MORDOR (Mortality Reduction after Oral Azithromycin) framework
covering trials in three countries had been approved by the Committee on Human Research
(Parnassus Panel) of the University of California, San Francisco IRB # 10-01036, reference
001294.

Data was recorded electronically using handheld Google Nexus 7 mobile devices with custom-
made software applications and uploaded onto a secure, password protected, central server.
Rapid transfer of electronically captured data allowed nearly real time monitoring of activity at
the study site. Data generated in Malawi was reviewed in real time by a data coordinating centre
based in Blantyre. All handheld devices and data entry coordinating centres were password
protected, and all changes in data were noted, including the date of the change, and the person
who made the change. Training sessions were conducted before each biannual census. The
central database application used hard disk encryption and physical protection of the server
(which was maintained in a locked room accessible only to authorized personnel). The database

was based on mySQL (which supports standard SQL queries). Data was backed up off site
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(providing integrity in case of the physical loss of the server). Data was never deleted from
mobile capture devices until at least one offsite backup had been completed. Data security during
electronic transfer was achieved through use of the Advanced Encryption Standard (AES). Data
was validated by the Malawi data coordinating centre data manager/study coordinator and de-
identified before uploading to the central database.

The data was explored to obtain important variables that would be used for analysis. The data
was first cleaned, and then sorted for easy navigation when doing analysis. For the purpose of
this thesis, the randomized subject who consented to be enrolled in the study was the unit of
analysis and the outcome variable was time to death. Categorical variables were coded using
numbers e.g. female =1, male=2; azithromycin = 1, Placebo=0; died=1, alive=0. Age was a

continuous variable. Survival time was measured in months.

3.7 Data analysis
3.7.1 The Estimates, Statistical Tests and the Level of Significance

The analysis first looked at some descriptive statistics (frequencies, Inter-quartile range, mean
and median) for the baseline characteristics. The baseline characteristics of the participants in the
study such as age and weight were presented as median and, naturally, the measure of dispersion
was the interquartile range. Rank-based measure of central tendency and its subsequent measure
of dispersion are ideal in survival data since survival data are typically right skewed. The Hazard
ratios, their corresponding coefficients and 95% confidence intervals were presented for Cox
Proportional hazards and extended Cox proportional hazards models. Also included were the
calculated p-values for all statistics. All statistical tests were made at 5% level of significance.
Kaplan Meier curves for the 2 groups were compared. The cumulative incidence curve and
Kaplan Meier curves were compared. Cl curves for categorical variables; gender, HIV status and
ART status were obtained and comparison between the different groups for the patients in terms

of survival was performed.

Statistical analysis were done using stata version 14, a statistical software package created in

1985 by StataCorp used in data management, statistical analysis, graphics and simulations.
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The Schoenfeld residuals and plots were used to test the PH assumption. The Martingale
residuals were used to check the Linearity of variable age. Time-varying covariates were used to

test for PH assumption for the extended Cox model.

3. 8 Model Specification

3.8.1 Cox Proportional Hazards model
We will fit Cox Proportion hazard model as it is the most common approach to model covariate
effects on survival. It takes into account the effect of censored observations (Cox., 1972). The
only assumption made is on the proportionality of the baseline hazard. The proportional hazard
assumption means that the hazard ratio is constant over time or that the hazard for an individual
is proportional to the hazard for any other individual (Therneau. & Grambsch., 2000). Let x1, ...
,Xn be the values of p covariates X1, ...., Xn, according to the Cox regression model, the hazard
function is given as follows;
h(t) = ho(t) exp(X, 8; xy), (50)
Where §; = (81,8,,8,) is a 1 x n vector of regression coefficients and hO(t) is the baseline

hazard function at time t.

The Cox proportional Hazard model is used to estimate the effects of covariates on child survival
in this thesis. The model has the capacity to identify covariates with little effect on survival and

risk of death of an individual based on prognostic covariate.

3.8.2 Extended Cox model

The extended Cox model was used to take into account time varying covariates to control for
survival overestimation. The time-dependent covariate and a covariate that has no time-
dependency will be modelled together using this model. The time-dependent covariate will be
interacted with time function because it does not meet the proportional hazard assumption.

The Cox proportional hazard model whose general form is illustrated in the equation below,
presents a function for the hazard at the time t for an individual with a given specification of a set
explanatory variables denoted by X. The X represents a vector of explanatory variables that are

modelled to predict an individual’s hazard.
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h(t, X) = ho(t) exp(Xi-; i Xi), (1)
where, X = X{, X, ... ... ... X,, Explanatory/predictor variables.

The Cox model formula above states that the hazard at time t is a product of two functions, the
baseline hazard function hy(t) and the exponential function e to the linear sum of B;X;, where
the sum is over the n explanatory X variables. The most important feature of the formula above
entails the proportional hazards (PH) assumptions underlined in the model application. This
feature is that the baseline hazard function is a function of't, it does not involve X’s, whereas the
Exponential function involves X’s but does not involve t. In this particular case the X’s are said

to be time-independent.

In some cases, however, it is possible to have X’s that do involve t, and such X’s are referred to
as time-dependent X’s. If these variables are considered, the Cox Ph model form can still apply
even though such a model does not satisfy the Proportional hazards assumption. When this

happens, it now called the extended Cox model and its general form is as follows:

h(t, X(©) = ho(t) exp[Xi2, BiXi + 2,2, 86,X, (O], (52)

In simple terms, the extended Cox model is a Cox regression model which has the addition of a
dependent time variable on variables that do not meet the proportional hazard assumption. From
the equation above, the extended Cox PH model also includes the baseline hazard function hy(t)
which is multiplied by an exponential function just like the Cox proportional hazard model but
unlike in the Cox proportional hazard model, the extended Cox model includes both time-
independent predictors denoted by X; variables and the time-dependent predictors denoted
byX, (t) variables in the exponential part. (Therneau & Grambsch, 2000). In this case X(t)

denotes the entire vector of predictors at time t.

The regression coefficients in the extended Cox model are estimated using a maximum
likelihood procedure just as it is the case with the Cox proportional hazard model. However, the

calculations for the latter are more complicated than those of the Cox proportional hazard model
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since the risk set used to form the likelihood function become more complicated as they include
time-dependent variables in them. (Hosmer & Lemeshow, 1999). Whereas the statistical
inferences methods are essentially the same as for both models where Wald test or likelihood

ratio (LR) test can be used and also the large sample confidence interval methods.

The effect which a time-dependent variable X, (t) has on survival probability at time t depends
on the value of the said variable at the same time t and not on the value at an earlier or later time.
This is an important assumption of the extended Cox proportional hazard model and that is to
say, the hazard at time t depends on the value of X, (t) at the same time. (Hosmer & Lemeshow,
1999). The values of the variable X, (t) may change over time but the hazard model provides
only one coefficient for each time dependent variable in the model. This statement simply says
that, at a given time t, there is only one value of the variable X, (t) that influences the hazard,

that value being measured at time t.

The formula for the hazard ratio as derived from the extended Cox model is as shown below:

__ . ht,x (@)
HR(t) = x©) (53)
= exp[XiY, B(X7 — XD + Zp2, 8, (X7 () — X:(0) ], (54)

The assumption of the proportional hazards is not satisfied when we apply the extended Cox
model. The general hazard ratio formula for the extended Cox model shown above describes the
ratio of hazards at a particular time t, and requires the specification of two sets of predictors at
time t. These two sets are denoted as X*(t)and X(t). The two vectors of predictors, X*(t)and
X(t), identify two categories at time t for the combined vector of predictors containing both

time-independent and time-dependent variables (Ingabire, Mwalili, & Orwa, 2015).
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3.8.3 Model assumption assessment and Goodness-Of-Fit
The proportional hazard assumption for the Cox model was performed. Cox Snell residual test
was performed to test goodness of fit. The linearity assumption was checked by plotting a
Martingale residual plot to check linearity for covariate age. Time-varying covariates were used
when modeling the hazards to test for proportionality assumption for Cox PH and Extended Cox
models. Whereas, the Schoenfeld's global test was used to test the proportional hazards
assumption.

3.9 Ethical consideration

Full ethical approval was granted by College of Medicine Research Ethics Committee
(COMREQC) to collect data from subjects in Mangochi, Malawi. Subjects’ names were not used
during analysis so as to uphold confidentiality. The parent trial is registered at ClinicalTrials.gov
identifier (NCTnumber): NCT02047981
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CHAPTER 4
RESULTS AND DISCUSSION
This chapter presents and discusses the results that have been obtained from the study analysis.
Section 4.1 presents the exploratory data analysis, section 4.2 presents the fitted models, and

section 4.3 presents model assumption assessment.

4.1 Exploratory data analysis
4.1.1 Baseline characteristics

Table 1.1, gives a summary of the baseline characteristics of the children included in the Study.
It presents the descriptive statistics of the variables to be used in the model estimation. This
study consists of 22,492 children aged between of 0- 18 months and the median coverage was
0.56 years, from the pool of a community-randomized trial conducted in the Malawian district of
Mangochi. The continuous variables, specifically, the mean age in years of the sample is 0.56
years and the standard deviation is 0.27 years, the median weight in kilograms (kgs) is 6.99 kgs
and the IQR is between 5.98 kgs and 7.97 kgs, for the dose in milliliters (mls) the mean is 3.66
mls and the standard deviation is 0.78 mls. Out of 22,492 participants 11,441 were males while
11,051 were females. Under the categorical variables, the sample contains 50.9 % male children
and 49.1 % female children. The children were randomly assigned to receive either azithromycin
or placebo. However, after azithromycin and placebo was administered to the children,
22,214(98.7%) were alive and 278(1.2%) were dead. The outcome which is an occurrence of
death, registered 1.2 % of death in the sample and 48 percent of the sample was administered the

Azithro treatment drug.
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Table 1. 1: Baseline Characteristics

Continuous Variable

Age (Years) , mean (SD)
Survival Time (days), SD (IQR)
Weight (kgs), median (IQR)
Dose (mls), mean (SD)

Categorical Variables

Sex: Male

Outcome: Dead

Drug:
Placebo
Azithro

Treatment:

Phase
-6 Months
0 Month
6 Months
12 Months
18 Months

0.56 (0.27)

0.16 (1.66,1.66)
6.99(5.98,7.97)
3.66(0.78)

n (%)

11,441(50.9%)

278(1.2%)

11,677(52%)

10,815(48%)

Treated

0(0%)

7,145(90%)

5,335(88%)

5,224(94%)
5,400(929%)

The study was conducted in 5 phases where in the first phase (Mordor -6) was just for
recruitment and no treatment was administered (baseline). The phases were separated in a space

of 6 months and at each phase there were drop-outs, new recruits (new born) and some who died.
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The highest number of those who were administered with drugs was at 12 months with 94% of

the participants received treatment.
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Figure 1. 1: Distribution of Survival time by Gender, Phase and Drug group

Figure 1.1 above shows how the median length is varying according to each survival time, for
females with placebo and azithro, their median length stay is similar at -6 months, while males
with placebo have higher median length of 20,314 days survival time than males with azithro
who have the median length of 20,310 days survival time. The median length for both males and
females is varying time outliers. It also shows that the distribution of survival time at -6 months
was right skewed for males and females who have placebo and azithro. Figure 1.1 above shows
the median length for the survival time at 0 months. Females with placebo and azithro, have
similar median length of 20,417 days survival time, while males with placebo have higher
median length of 20,424 days survival time than males with azithro who have the median length
of 20,416 days survival time. The median length for both males and females is varying time

outliers. It also shows the median length for the survival time at 6 months. Females with placebo
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and azithro, have similar median length of 20,616 days survival time, while males with placebo
have higher median length of 20,616 days survival time than males with azithro who have the
median length of 20,615 days survival time. The median length for both males and females is
varying time outliers. It also shows the median length for the survival time at 12 months.
Females with placebo and azithro, have similar median length of 20,785 days survival time,
while males with placebo have higher median length of 20,785 days survival time than males
with azithro who have the median length of 20,775 days survival time. At 12 months the survival
time is higher for placebo and for azithro. It shows the median length for the survival time at 18
months. Females with placebo and azithro, have similar median length of 20,965 days survival
time, and males with placebo and azithro have similar median length of 20,965 days survival

time. At 18 months the survival time is similar for both placebo and azithro.

4.2 Model Estimation Results

As already discussed in section 3.8 of the methodology chapter, the Extended Cox model (to
account for time-varying covariates) and Cox-proportional hazard model were fitted separately.
We then plotted Kaplan Meier curves to compare survival times between the 2 groups.

Thereafter, the fitted models were compared to check if the estimates were different.

This section presents estimates for all the fitted models.
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4.2.1 Kaplan- Meier survival estimates

Kaplan-Meier survival estimates
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Figure 1. 2: Survival estimates in the 2 Drug groups

In Figure 1.2, The median survival is the smallest time at which the survival probability drops to
0.5 (50%) or below. If the survival curve does not drop to 0.5 or below then the median time
cannot be computed. The median survival time and its 95% Cl is calculated according to
Brookmeyer & Crowley, 1982. Azithromycin drug group seems to be doing better than Placebo
group with a median survival time 0.1though we fail to determine the median survival in placebo
group as the survival curve does not drop to 0.5 or below. From the first year, the survival
probability can hardly be compared between the two groups as the rate at which the survival
probability drops is all the same. The Kaplan-Meier survival probability estimates at 12 months
were both about 0.95 for both Azithromycin drug group and Placebo. The difference in the drop
is more clearly soon after one year as the survival probability in the Placebo group drops more

than in the azithromycin drug group.
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Kaplan-Meier survival estimates
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Figure 1. 3: Survival estimates in the age categories (less than 6 months old) and (atleast 6

months old)

From Figure 1.3 above, we can only compute median survival for those that are less than 6
months old as their graph drops to 0.5 and below. There are more deaths in age category 1 (those
that are less than 6 months old) than in the 6 months plus age group. This shows that as you

grow, survival is higher than in the infants.

4.2.2 Failure rates and rate ratios

Table 1. 2: Failure rates and rate ratios

Drug Deaths (D) | Person-in-time (years) | Rate (D/Y) | (95%ClI)

(Y)
Placebo 152 0.14 1062.79 (906.6, 1245.9)
Azithro 126 0.13 933.47 (783.9, 1111.6)
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The Table 1.2 above shows that the failure rate in the placebo group is higher than in the
Azithromycin group. This is also illustrated by the graph in Figure 1.4 below
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Figure 1. 4; failure rates across the 2 Drug groups

4.2.3 Logrank-test for equality of survival functions
The Table 1.3 presents the results of Logrank-test for equality of survival functions of the
placebo and Azithro drug. As shown in the table, the hypothesis that survival functions are equal
or the same cannot be rejected. This is evidenced by the p-value of 0.366, which indicates that

there is no significant difference between survival functions of the two drug treatments.
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Table 1. 3: Logrank-test for equality of survival functions in the two groups

Drug Events Observed Events expected
Placebo 152 144.5
Azithro 126 133.53
Total 278 278.00
p-value = 0.82 p-value = 0.366

152 cases in Placebo group and 126 cases in the azithromycin group presented the outcome of
interest. The Chi-squared statistic was 0.82 with associated P-value of greater than 0.05. The
conclusion therefore is that, statistically, the two survival curves do not differ significantly, or

that the grouping variable has no significant influence on survival time.

4.2.4 Fitting Cox Proportion hazard (PH) model
The table 1.4 below, indicates that the model fits well as it is significant at 1 percent level, this is
shown by the p-value of 0.0001. From the table, only age and weight are significant at 1 percent
level, where age is positively associated with occurrence of death and weight is negatively
associated with occurrence of death. This implies that occurrence of death for individuals with
more weight is unlikely and while for those that are aging or growing the occurrence of death is
likely. The variable of interest (the drug treatment) and the other variables are however, not

significant.
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Table 1. 4: Unadjusted and adjusted Hazard ratios

variable unadjusted HR (95% | P-value | adjusted HR (95% | P-value
Cl) Cl)
age 1.07(0.66, 1.73) 0.798 | 15.03(5.17, 43.74) <0.001
Treatment-received 0.95(0.73,1.2) 0.709 0.04(0.02, 11.94) <0.001
Sex 1.01(0.79,1.28) 0.955 1.29(0.89, 1.86) 0.176
Male
Dose 1.08(0.87,1.32) 0.495 1.68(0.78, 3.62) 0.182
Drug 0.87 (0.69, 1.11) 0.269 | 1.08(0.75, 1.55) 0.666
Azithro
Weight 0.87 (0.76, 0.99) 0.039 | 0.56(0.37, 0.85) 0.001

The Table 1.4 above shows unadjusted and adjusted Hazard ratio summaries. All variables do
not fit well in the model when specified without other variables. When the model was fitted with
all variables in it, the 3 variables were found to be significant and were fitted separately in the

model shown in Table 1.5 .

Table 1.5: Fitted Cox PH model

variable Coef (95% CI) P-value

Main age 2.61(1.59, 3.63) <0.001
weight -0.27 (-0.44, -0.10) 0.001

Treatment-received -3.33(-4.18 , -2.48) <0.001

The Table 1.5 indicates that the overall model is not significant, evidenced by the p-value of

0.9097. The model does not fit which means there is misspecification issue.

Note that there is a positive association between age and all-cause mortality and between weight
and all-cause mortality (i.e., there is increased risk of death for older participants and for those
with less weight). Again, these two parameter estimates represent the increase in the expected
log of the relative hazard for each one unit increase in the predictor, holding other predictors

constant. There is a 2.61 unit increase in the expected log of the relative hazard for each one-year
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increase in age, holding other variables constant, and a -.27 unit decrease in expected log of the
relative hazard for each gram decrease in weight, holding all variables constant.

For interpretability, we compute hazard ratios by exponentiating the parameter estimates. For
age, exp(2.61(1.59, 3.63) = 13.56 (4.89, 37.64) HR. the expected hazard is 13.56 times higher in
a person who is one year older than another, holding all other variables constant. Similarly, exp(-
3.33 (-4.18 , -2.48) = 0.03 (0.02, 0.08). The expected hazard is 0.03 times lower for those who
receive treatment compared to those who did not receive treatment, holding other variables

constant.

4.2.5.Fitting extended Cox models
The Table 1.6 below indicates that the overall model fits well as it is significant at 5 percent
evidenced by the p-value (0.000). The treatment received that factors in the time independent
predictors is positively significant at 1 percent with a magnitude of 3.05. The treatment received
for time-dependent factors is also positively significant at 1 percent with a lesser magnitude of
0.62. This basically, indicates the effectiveness of the treatment drug, that will diminish with

respect to time.

Table 1. 6: Extended Cox model

variable Coef (95% CI) p-value
Main  age 1.32(-0.63, 3.27) 0.185
Treatment-received 3.05(1.92, 4.17) <0.001
tve age 0.22 (-0.17, 0.61) 0.274
Treatment- Received 0.62(0.39, 0.84) <0.001

The Table 1.6 above shows parameter estimates from a fitted extended Cox model which takes
into consideration the time varying covariates. The fitted model shows that it is significant with a
p-value of <0.001 but the model shows different estimates from the same variable in this model.

From the main model, there is a 1.32 unit increase in the expected log of the relative hazard for

each one year increase in age, holding other variables constant, and a 3.05 unit increase in
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expected log of the relative hazard for those that received treatment compared to that that did not

receive, holding all variables constant.

From the tvc (time- varying covariate) model, there is a 0.22 unit increase in the expected log of
the relative hazard for each one year increase in age, holding other variables constant, and a 0.62
unit increase in expected log of the relative hazard for those that received treatment compared to
that that did not receive, holding all variables constant.

For interpretability, we compute hazard ratios by exponentiating the parameter estimates. For
age, exp (1.32(-0.63, 3.27)) = 3.74 (0.53, 26.35) HR. The expected hazard is 3.74 times higher in
a person who is one year older than another, holding all other variables constant. Similarly, exp
(3.05(1.92, 4.17)) = 21.01 (6.82, 64.72) HR. The expected hazard is 21.12 times higher for those
who did not receive treatment compared to those who received treatment, holding other variables

constant.

For age, exp (0.22 (-0.17, 0.61)) = 1.24 (0.84, 1.83) HR. the expected hazard is 1.24 times higher
in a person who is one year older than another, holding all other variables constant. Similarly,
exp (0.62(0.39, 0.84)) = 1.85 (1.48, 2.31) HR. The expected hazard is 1.85 times higher in the
those who did not receive drug as compared to those who received, holding other variables
constant.

Looking at the parameter estimates, the main model overestimates survival as compared to the

tvc model which takes care of the time varying covariates.

4.3 Model assumption assessment and Goodness-Of-Fit

The section outlines model adequacy assessment results.

4.3.1 The Schoenfeld's global test
Table 1.8 below gives the results for the Schoenfeld's global test which assesses the assumption
that the hazards in the Cox-proportional hazard model are proportional over time, i.e. testing
whether effects of covariates on risk remain constant over time. Specifically, the test computes a

test for each covariate i.e. testing the hypothesis of zero slopes in each of the covariates in the
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model, along with a global test for the model as a whole. Thus, a non- zero slope is an indication
of a violation of the proportional hazard assumption.

We observe that, at 95% confidence level (Cl), all the covariates and the global test are not
statistically significant (p-values > 0.05). Therefore, we fail to reject the hypothesis of zero
slopes i.e. the assumption of proportional hazards is not violated. However, as with any
regression model, it is recommended to look at the graphs of the regression in addition to
performing the tests of non-zero slopes.

Table 1. 7: The Schoenfeld's global test

covariate rho Chi-square P-Value
age 0.006 0.01 0.936
weight 0.089 1.66 0.196
1.treatment -0.077 0.93 0.334
global test 2.83 0.418

Therefore, Figure 1.5 below presents the graphs for the scaled Schoenfeld residuals for each
explanatory variable versus survival time. The solid line is a smoothing-spline fit to the plot,
with the broken lines representing a +- 2-standard-error band around the fit. From the graphs, we
also clearly observe that the fitted lines (slopes) for the scaled Schoenfeld residuals for each
covariate are not significantly different from zero (i.e. no systematic departures from a horizontal

line), that is confirming the test results obtained in the Schoenfeld global test.
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Test of PH Assumption for Age
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Figure 1. 5: Schoenfeld residual plots for each predictor for event death

4.3.2 Time-Varying covariates

In order to test if the Cox PH model satisfied the proportional hazard assumption, the Cox PH

model was performed with age, treatment as time-varying covariates interacting with the analysis

time. Table 1.8 presents results that were obtained after fitting the Cox PH and extended cox PH

models for failure event Death.
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Table 1. 8: Cox PH model and Extended Cox Model with time-varying covariates

Variable HR(95% CI) P-value
Cox PH model
Main age 3.55(1.37,9.19) 0.009
weight 0.72(0.61, 0.86) <0.001
Treatment-received 0.37(0.17, 0.80) 0.011
Extended Cox Model with time-varying covariates
Main age 5.63(0.00, 7.51) 0.552
weight 5.28(1.31, 2.11) 0.289
Treatment-received 3.02(1.72, 0.00) 0.447
tvc age 28.45(-64.95, 121.84) 0.551
weight 9.07(-7.75, 25.89) 0.291
Treatment- Received -29.17(-14.05, 45.72) 0.445

The estimated hazard ratios are split into two categories in Stata, hazard ratios for variables with
constant time and HR for time-varying covariates. From Table 1.8, it is observed that Age did
not significantly interact with time (p>0.05), therefore a conclusion can be made that the PH
assumption for the Fine and Gray regression is not violated. However, treatment variable
significantly interacted with time (p<0.05) and we conclude that the PH assumption for the fine
and Gray regression was violated. The same conclusion on the PH assumption can be made for
the extended Cox model with death as the failure event, age, weight and treatment are not
significant, thus failing to reject the null hypothesis of PH assumed. The PH assumption is not
violated for this model (p>0.05).

4.3.3 Checking Linearity for Age

To check if the variable age is appropriate in a continuous form, the Martingale’s residuals were

plotted against age. Figure 1.6 presents the results for the analysis.
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Figure 1. 6: Testing Linearity on variable age.

There was an approximate linearity in the functional form of the covariate age. This indicates the
need to transform the covariate Age was not minimal. This shows that the log-hazard is slightly
linear in age. Therefore, in addition to the violated PH assumption, results of age on the fitted

Cox PH models were not acceptable too.

4.3.4 Goodness of Fit Test
Cox-Snell residuals were used to evaluate the fit of the model. If the model fits the data well
then, the true cumulative hazard function conditional on the covariate vector has an exponential
distribution with a hazard rate of one. First the Cox PH models were fitted for failure event death
followed by the extended Cox model for the time-varying covariates. The Nelson-Aalen
cumulative hazard functions were plotted to compare the hazard functions to the diagonal line.
Goodness of fit was determined if the hazard function follows the 45 degrees line, implying that

the cumulative hazard was approximately exponential with a hazard rate of one.
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Figure 1. 8: Goodness of Fit for a Extended Cox PH model
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Figure 1.7 and Figure 1.8 above shows that the hazard functions appear to follow the 45-degree
line very closely at the beginning of the curve except for very large values of time especially for
hazard event death. It is hard to fully conclude that the models fit the data well or that the models

adequately fits or describes the data well.

In the preceding chapter, we have presented the results that have been obtained from the study
analysis. In the following chapters, we will present the Discussion, conclusion,

recommendations, and study limitations.

4.5 Discussion

In the MORDOR trial, the hazard for death in children aged 1-59 months in the time after
distribution was significantly lower in communities randomized to azithromycin compared to
placebo. This study also found that the hazards of death were lower in azithromycin group
compared to placebo group through the logrank test. However, from the sample used for this
thesis, the two survival curves do not differ significantly, or that the grouping variable has no

significant influence on survival time.

The study took into account the presence of time varying covariates to estimate the effect of Age,
weight, dose and receiving treatment on the hazard of death for participants in the controlled
randomized trial (MORDOR). The Cox proportional hazard model overestimated the hazards of
dying in the two study arms. The Cox proportional hazard model estimates treat covariates as
being constant from baseline value. This leads to overestimation of hazards for the failure event.
This is the case since the Cox proportional hazard model interprets the hazards of death without
taking into account the presence of time varying covariates in the model. The extended Cox
proportional hazard model must be used instead to estimate the hazards of survival when dealing
with data that has time varying covariates. Several studies and authors by (Barnett et al., 2011)
and (Ngwa et al., 2016) have pointed out that the extended Cox Model is an appropriate tool to

use for estimation in the presence of time varying covariates.

In the study, we were able to determine the effect of the covariates on the hazard of death in the

presence of time varying covariates by observing the estimates obtained from the both the Cox
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proportional hazard model and extended Cox model. If the estimates are similar between the
models, then we would say that the models are estimating the estimates well. The study showed
that covariate estimates between the models Cox proportional hazard and extended Cox
proportional hazard were slightly different with different confidence interval spans. Based on
these results, it implies that time varying covariates affect estimation of the covariates on the
event death. Therefore, it is not good to ignore the presence of time varying covariates in the

models.

The results from this study agree with various authors who stated that the extended Cox model is
a better model when studying data that involves time varying covariates [28]. Therefore, to have
estimates that better explains the hazards in the presence of time varying covariates, the extended
Cox model was a better model than the commonly used Cox proportional hazard model. In Table
1.6, Age, weight and receiving drug were identified with higher hazards in the Cox proportional
hazard model and lower hazards in the extended Cox model (Table 1.7). This is similar to one
study which showed that using models that do not account for time varying covariates
overestimates the results [28]. Another interesting result on covariates affecting the probability
of death taking into account the presence of time varying covariates was age which was
significant only in Cox proportional hazard model and not in the extended Cox model. The
expected hazard is 3.74 times higher in a person who is one year older than another in the
Placebo group than in the Drug group, holding all other variables constant. Whereas the model
that account for time varying covariates estimates states that the expected hazard is 1.24 times
higher in a person who is one year older than another in the Placebo group than in the Drug
group, holding all other variables constant. This is quite a high difference and would require the
attention of medical researchers to take care of this issue when conducting analysis of such data

to avoid overestimated conclusion.
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CHAPTER 5
CONCLUSION, RECOMMENDATIONS AND LIMITATIONS

This chapter summarizes the study, outlines some recommendations for analyzing survival

outcomes subject to time-varying covariates, and finally the limitations of the study.

5.1 Conclusions

A comparison of the extended Cox model and Cox proportional hazard model showed that cox
proportional hazard model that do not take into account time varying covariates produced higher
hazards of the failure event death unlike the extended cox model that takes into account time
varying covariates. Since Cox proportional hazard model considers all covariates as fixed and
calculates the probability estimates of death without taking into account the effect of the time
varying covariates. It is therefore of importance to use the extended cox model to obtain the

survivorship of an event of interest in the presence of time varying covariates.

The study showed that the influence of the time varying covariates on the cox proportional
hazard model and on extended cox model of the event of interest gave different results. Age,
weight, and treatment received were the only significant covariates in the Cox proportional
hazard model and extended cox model. In all these models, age, weight, and treatment received
had a significant effect on the probability estimates of event death. The estimates were high and
overestimated in in the Cox proportion hazard model than in the extended cox model. The
difference arises since the Cox proportional hazard model looks at the effect of covariates on the
event of interest only without regards to how the covariates change over time as it treats them as
fixed covariates. While this is the case for Cox proportional hazard model, the extended cox

models take into account the effect of time varying covariates.

Ignoring the presence of time varying covariates in Cox regression model can lead us completely

wrong results. Using a Cox regression model without ensuring that the underlying assumptions
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are validated may result in negative implications on the estimates. If the assumption is violated,
the extended Cox regression model is appropriate because it is more flexible to handle time

dependent variables.

In our analysis, initially, the Cox regression was performed by considering that all explanatory
variables are constant over time. Then, extended Cox regression models were estimated by
including the time-dependent explanatory variables in the model as it was with the cox
regression model. The fitted extended model results have shown that it become useful to estimate
the Cox Proportional Hazards regression by also including the time-varying explanatory
variables to the analysis. Both the time-independent and time-dependent variables create

significant effects on the probability of survival of the time to death of the under-fives.

The study revealed that factors Age, weight and treatment-received of a participant were
significant predictors in time to death for under-fives. Older participants and those with more
weight were more likely to survive than the infants with less weight. The study showed a non-
significant effect of gender on time to death of the under-fives. Thus, gender was considered as
unimportant factor affecting time to death. More importantly our main goal was not to show the
significant contributors on first death for infants in the two study arms but also how different
models handle their different behavior over different time interval. We found that we had
covariates that were time dependent and fitting Extended Cox regression model in such time
dependent covariate situation performs better (fitted better) than traditional Cox regression

model.

5.2 Recommendations

It is important to use models that handle time varying covariates in analyzing data that has time
varying covariates present in the datasets. It is best to use the extended cox regression model
than the traditional Cox PH model to estimate the survivorship function when modelling data
with time-varying covariates. It will be statistically wrong to overlook the presence of time

varying covariates in the model as we may end up with overestimated estimates.
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This Extended Cox modelling approach of analyzing survival data that takes into account the
presence of time varying covariates is therefore, valuable and effective because it incorporates all
the available information in the data, and this suggests that the overestimation that might result

from an analysis that ignores the presence of time varying covariates in the data is minimized.

5.3 Limitations

Firstly, the study sample size is very small and only include those two-year-olds and below as
the primary study results were more significant in this age group, which insignificantly
represents the population. This was due to a lot of inconsistencies in the dataset that the study
used as most records had one follow up visit in the period of 5 rounds. It should be noted that
this was secondary data and there was little that we could do with the data inconsistencies. That
is, we discarded data that had dubious values which could not be verified. Therefore, only few
participants had all the necessary information that the study required. As a result, the results of
this study cannot significantly be inferred to the population from which the sample came from.
For this reason, the results that we get in this study only signifies the greater competence that an
extended Cox model might have in modelling survival data subject to non-ignorable time

varying covariates.

Lastly, in the study, all participants with intermittent missing values were not considered in the
study analysis. This was due to the study's focus on only time-to-death data. Therefore, the study
proposes a further study that incorporates the intermittent missing values in its analysis. In this
last chapter, we have summarized the study, and outlined some of the recommendations for
analyzing survival outcomes in the presence of time varying covariates and put forward some of

the limitations that the study faced.
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Appendix
STATA PROGRAMS USED TO ANALYSE THE DATA

*Programer: Alvin Chisambi
*Program: Biostatistics Masters Thesis- Survival data: MORDOR study
*Supervisor: Prof Mavuto Mukaka

use ""C:\Users\Malawi3\Downloads\MSc thesis Alvin2019\thesis\lates Concept and
Data v25022019\mordor_study CLEANED.dta", clear

*hkhkkkhkhkhkkhhkhkkhkhkhkhhkhkkhkhkhkhkhhkhkhkhkhkhhkhkhhhkhhhkhhhkkhihkkhkihkhiikkiik

*keep unique values for some baseline characteristics

duplicates list masterhh_numeric

duplicates tag masterhh_numeric, generate(dup)

tab dup

drop if dup>0

ta id phase
S A
*keep id, phase, weight, dose, age, treatment, died, drug, sex and studyarm
replace phase=1 if phase==-6

reshape wide treatment died age dose weight , i( id) j( phase)

table drug-sex

table drug

table sex

table studyArm

ta diedl

ta died0

ta died6

ta died12

ta died18

67



reshape long treatment died age dose weight , i( id) j( phase)

k,hkkkhkhkkkhkhkhkkhhkhkkhkhkhkkhkhhkkhkhhkkhhhkkhkkhhkhkkhkhkhkkihkhkkhkhkhkkhhhkkhhhkkhhhkkhhhkkhihkkhkihkkiihkiiikk

*Reload the dataset

encode Gender, gen(sex)
drop Gender

drop gender_numeric

*renaming participants ID

rename masterperson id

rename Dose bl dose

rename treatment_received_bl treatment
rename Weight weight

rename age_bl_yrs age

rename Rxlab group

rename MortalityOnly studyArm

replace weight=. if weight ==

label define treatment 0"'Did not receive' 1'"Received"’

label values treatment treatment

*Qutcome/Failure variable (thats our survival status) 1=died O=alive

rename VitalStatus_numeric_fu died

*survival time (days) (Time variable)
*Phase: -6=baseline census, O=when analysis begin, 6=6 months, 12= 12 months,
18=18months

*used days instead of months for phase
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rename Census_fu_incl_Itfu stime

*link the individuals using 1D
*This will increase person-years at risk and decrease the rate estimates,

*as failures will remain the same. The rate ratios will be similar

*Counting each observation as unique

genid=_n

*Declaring data to be survival data
stset stime, id(id) failure(died==1) entry(time CensCap_numeric_bl) origin(time
masterDOB_numeric_bl) scale(365.25)

*check through the database for additional varibales created
*st d t t0

sort id

listin 1/5

set more off

*cleaning for duplicates we will use masterpersonphase as data is in long format and
id will appear multiple times

duplicates list masterperson_phase

*rename variables

rename Gender sex

*order variables
order died Rxlab sex treatment_received bl Dose bl Weight stime MortalityOnly

age_bl_yrs, before(masterperson_numeric)
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*ldentifying Time-Varying variables
stdescribe
stsum

stvary

*ANALYSIS

*1. Exploratory Data Analysis

*1.1 baseline characteristics
tabstat age weight dose stime , by( drug ) stats(mean median SD IQR p25 p75)
col(stat) long

summarize stime, detail
summarize age , detail
summarize weight , detail

summarize dose , detail

*categorical variable
ta sex if phase==

ta sex if phase==

ta sex if phase==-6
ta sex if phase==12
ta sex if phase==18

table drug
table treatment

table sex
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table drug treatment, by (sex)
table died, by (drug )c(freq)

table died, by (sex )c(freq)

table died drug , by (phase )c(freq)

set more off

*Qutcome
table died

*Box plots

graph box  stime , over(sex) over(drug) over(phase)
graphregion(fcolor(white))

graph box stime if phase==-6, over(sex) over(drug) over(phase)
graphregion(fcolor(white))

graph box stime if phase==0, over(sex) over(drug) over(phase)
graphregion(fcolor(white))

graph box stime if phase==6, over(sex) over(drug) over(phase)
graphregion(fcolor(white))

graph box stime if phase==12, over(sex) over(drug) over(phase)
graphregion(fcolor(white))

graph box stime if phase==18, over(sex) over(drug) over(phase)

graphregion(fcolor(white))

graph  box stime , over(agecat) over(drug) over(phase)

graphregion(fcolor(white))

*Graphs
histogram dose, normal by(drug) by(phase) graphregion(fcolor(white))

histogram dose, normal by (drug) graphregion(fcolor(white))
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histogram age, normal by (drug)
histogram weight, normal by (drug) plotregion(fcolor(white))

*Died before and after intervention
ta died drug if phase ==-6

ta died drug if phase !'=-6

ta died drug

*2. Objective 1 and 2

*Kaplan- Meier survival estimates

generate agecat=0
replace agecat=1 if age <0.6

replace agecat=2 if age >0.6

sts graph , by(drug) graphregion(fcolor(white))
sts graph, by(agecat) graphregion(fcolor(white))

*Failure rates and rate ratios

strate drug, per (1000) graph graphregion(fcolor(white))

*life tables for survival
*Logrank-test for equality of survival functions

Itable stime died, survival by(drug) test

*QObjective 3
*3a. Fitting Cox PH model
stcox i.drug age dose i.sex weight i.treatment, nohr

stcox age weight i.treatment, nohr
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stcox i.treatment, nohr

stcox age, nohr

*3b.Fitting extended cox models
stcox age i.treatment , tvc(age i.treatment) texp(In(_t)) nohr

stcox i.treatment

*5.0 Test of proportional-hazards assumption

*If p-value is greater than 0.05 then we are safe, we donot reject null hypothesis that
the hazards are prorpotional

estat phtest, detail

stphplot, by(drug) adjust(age)

*Calculating survival functions
sts list, at(-6 0 6 12 18)

*comparing survival functions
streg age drug, d(llog)

stcurve, survival ylabels(0 .5 1)
stcurve, hazard

stcurve, survival at1(drug=0) at2(drug=1) ylabels(0 .5 1)

stcox age drug
stcurve, survival
stcurve, survival at1(drug=0) at2(drug=1)

stcurve, hazard atl1(drug=0) at2(drug=1) kernel(gauss) yscale(log)
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*6 Model Diagnosis

FrkxxA**FTest for PH assumption*xsxsxsrx

estat phtest, detail

stphtest, plot(age)graphregion(fcolor(white))
stphtest, plot(i.drug)graphregion(fcolor(white))
stphtest, plot(sex) graphregion(fcolor(white))
stphtest, plot(dose)graphregion(fcolor(white))
stphtest, plot(weight)graphregion(fcolor(white))
stphtest, plot(i.treatment)graphregion(fcolor(white))

*******************G OOdneSS of Fit test*****************

*for cox PH*

stset stime, failure(died==1)

Xi: stcox age weight i.treatment, mgale(mg)
predict coxsn, csnell

stset coxsn, failure(died==0)

sts generate H=na

twoway (scatter coxsn H) (line coxsn coxsn)
stset, clear

drop mg coxsn H

*for extended cox*

drop mg

drop coxsn

drop H

stset stime, failure(died==1)
streset, id(id)

stsplit, at(failures)

generate agetvc = age*(_t"2)
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generate treatmenttvc = treatment*(_t"2)

stcox agetvc treatmenttvc, nohr mgale(mg)

*xi: stcox age i.treatment , tvc(age i.treatment) texp(In(_t)) nohr mgale(mg)
predict coxsn, csnell

stset coxsn, failure(died==1)

sts generate H=na

twoway (scatter coxsn H) (line coxsn coxsn)

stset, clear

FrxxxA**Checking Linearity for Age*****x**x*
stset stime, fail(died==1)

Xi: stcox age weight i.treatment, mgale(mg)
twoway (scatter mg age) (lowess mg age)

stset, clear
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